Automated Detection of Hard Exudates in Fundus Images Using Improved Otsu Thresholding and Svm
نویسندگان
چکیده
One common cause of visual impairment among people of working age in the industrialized countries is Diabetic Retinopathy (DR). Automatic recognition of hard exudates (EXs) which is one of DR lesions in fundus images can contribute to the diagnosis and screening of DR.The aim of this paper was to automatically detect those lesions from fundus images. At first,green channel of each original fundus image was segmented by improved Otsu thresholding based on minimum inner-cluster variance, and candidate regions of EXs were obtained. Then, we extracted features of candidate regions and selected a subset which best discriminates EXs from the retinal background by means of logistic regression (LR). The selected features were subsequently used as inputs to a SVM to get a final segmentation result of EXs in the image. Our database was composed of 120 images with variable color, brightness, and quality. 70 of them were used to train the SVM and the remaining 50 to assess the performance of the method. Using a lesion based criterion, we achieved a mean sensitivity of 95.05% and a mean positive predictive value of 95.37%. With an image-based criterion, our approach reached a 100% mean sensitivity, 90.9% mean specificity and 96.0% mean accuracy. Furthermore, the average time cost in processing an image is 8.31 seconds. These results suggest that the proposed method could be a diagnostic aid for ophthalmologists in the screening for DR.
منابع مشابه
Adaptive Neuro-Fuzzy Inference System Approach for the Automatic Screening of Diabetic Retinopathy in Fundus Images
Problem statement: Diabetic retinopathy is one of the most significant factors contributing to blindness and so early diagnosis and timely treatment is particularly important to prevent visual loss. Approach: An integrated approach for extraction of blood vessels and exudates detection was proposed to screen diabetic retinopathy. An automated classifier was developed based on Adaptive Neuro-Fuz...
متن کاملAutomated Segmentation of Hard Exudates Using Dynamic Thresholding to Detect Diabetic Retinopathy in Retinal Photographs
Retinal images are in use by ophthalmologists for the clinical analysis and diagnosis of different retinal diseases. The ocular disease known as Diabetic Retinopathy (DR) is a retinal disease that causes microvascular changes in the eye retina. Hard Exudates (HE) a retinal lesion can be seen as bright yellowish spots in colored fundus photograph and as bright white blobs in red free fundus imag...
متن کاملMorphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal
Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...
متن کاملReducing Light Change Effects in Automatic Road Detection
Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...
متن کاملReducing Light Change Effects in Automatic Road Detection
Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...
متن کامل